Section 7

LEISA Atmospheric Corrector (LAC)

Requirements

- Correct High Spatial Resolution Multispectral Imager Data for Atmospheric Effects
- Hyperspectral Imager
- Moderate Spectral Resolution (<10 nm)
- Moderate Spatial Resolution (<300 meter)
- Minimize Impact on Spacecraft Resources
- Maximize Flexibility

Contribution to EO-1

- Validation of Wedged Filter Approach for Spacecraft Instrumentation
- Atmospheric Correction for ALI Multispectral Images.
- Atmospheric Correction for Landsat-7 Images (Formation Flying).
- Direct Study of Spatial Resolution Degradation (Cross-Comparison with Hyperion).
- Retrieved Atmospheric Parameters.
- Cross-Comparisons with MODIS.

LAC Block Diagram

Wedged Filter Operation

Wedged Filter Schematic

Filter Layer Composite Detail

Optics Module Detail

LAC Internal Detail

LAC Performance

- Spectral Coverage: ~0.9 1.6 mm; 256 Bands Selected for Optimal Correction of High Spatial Resolution Images.
- Spectral Resolution 2 Filter Sections:
 Section 1 ~35 cm⁻¹ (Dl: 5 nm @ 1.2 mm, 9 nm @ 1.6 mm)
 Section 2 ~55 cm⁻¹ (Dl: 4 nm @ 0.9 mm, 8 nm @ 1.2 mm)
- Swath Width: ~185 km; Matches Landsat
- Spatial Resolution (pixel): 356 mradian (250 meter @ 705 Km).
- Three 256 x 256 Element InGaAs Arrays; TEC Stabilized (<285 K).
- Three 15 Degree FOV 3 Element Lenses
- Two Modules: "Bolt-on"Optics Module and Electronics Module.
- Mass: 10.5 kg (EM, 4.4 kg; OM 3.9 kg; Cable 2.2 kg)
- Power: 48 W (Peak); <15 W (Orbital Average)

LAC Line Widths

LAC Half-Width Summary

LAC System Trades

- Spatial Resolution vs. Spatial Coverage
 - 250 meter spatial resolution near maximum required for atmospheric correction
 - 185 km Matches Landsat7
 - Requires three 256 x 256 arrays
- Thermo-Electric Coolers (TEC) vs. Passive Radiators
 - TECs require more power, but significantly simplify integration and operations
- Wedged Filter vs. Conventional Technologies
 - Wedged filter data Analysis systems not as developed but instrument has less mass and complexity than conventional
 - No moving parts

LAC System Trades

- IR vs. Visible Spectral Coverage
 - IR gives better water vapor and cirrus cloud information at the expense of aerosol information
 - InGaAs arrays now can cover 0.5 to 1.7 micron
- 1.6 vs. 2.5 micron Longwave Cutoff
 - Cryogenic cooling not required
- Two Module vs. 1 Module Design
 - Gain in system flexibility and platform independence compensates for increased mass and additional integration

LAC Performance Testing

Box Level

- All Cards Simulated on an Individual Basis
- TECs Tested with Engineering Backplane (Focal Plane)
- Focal Plane Timing Tested with Multiplexers

Subsystem Level

- OM: Limited Set of Images Obtained with EM Simulator
 - Engineering Model Vibration Tested
- EM: Operation Tested by Interface to OM Simulator

Instrument Level

- Vibration and Thermal-Vacuum
- Radiometric/ Spectral Calibration and Alignment
- EMI/EMC

LAC Test Descriptions

Vibration:

- Individual Modules Tested to Proto-flight Level (1.25 X Expected Maximum Flight Loads)
- Instrument Mounted on Spacecraft and Tested to Flight Level
- Thermal Vacuum (Pre-spacecraft Integration):
 - Four Cycles to Survival Levels (-10° C to + 50° C; Range Expected on Orbit 20° C ± 10° C)
 - Operation from 0° C to 30° C (Orbital Predict 20° C, 30° C Worst Case)
 - Images Obtained Using LAC GSE
- Thermal Vacuum (Integrated with Spacecraft):
 - Four Cycles
 - Operation from 0° C to 30° C (No Operation at 40° C)
 - Images Using Spacecraft System (WARP, XPAA, etc.)

LAC Test Descriptions

EMI/EMC:

 Instrument Level Tests: Conducted and Radiated Emissions, and Radiated Susceptibility

Alignment:

- Orientation of Arrays with respect to Alignment Cube Using Theodolites
- LAC Alignment to ALI on Spacecraft Using Theodolites

Optical Calibration:

- Wavelength and Instrumental Shape: Grating Monochrometer
 1 to 100 nm Steps
- Radiometric: Calibrated Black-body (all 4 TEC Settings)
- Flat Field: Diffuse Source Illuminating Lenses and Solar Calibrators

Data Flow

LAC on Spacecraft

- Atmospheric Corrector on EO-1
- Three lenses are nadir facing
- Solar
 Calibrators
 are facing
 forward
- Alignment cube on right

LAC Pre-Launch

LAC Comparative Size

LAC Technology Transfer

- Compact design adaptable to many moderate Spatial Resolution Hyperspectral applications
- Optics Module adaptable to redesign for differing spatial resolutions
- Electronics Module adaptable to redesign for differing spacecraft interfaces
- Spectral coverage/spectral resolution selectable by choice of Wedged Filter
 - 0.5 to 1.7 mm InGaAs Arrays Available
- GSFC owns this design and is willing to infuse it into any U.S. commercial or academic institution

LAC Image of Niger3 (1.243 mm)

Landsat Image of Niger3

LAC Image of Niger3 (1.383 mm)

LAC Image of Panorama (1.243 mm)

Landsat Image of Panorama

